Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Andrew D. Bond,* Marc R. Edwards and William Jones

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England

Correspondence e-mail: adb29@cam.ac.uk

Key indicators

Single-crystal X-ray study T = 180 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.037 wR factor = 0.096 Data-to-parameter ratio = 17.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Azelaic acid

The crystal structure of heptane-1,7-dicarboxylic acid (azelaic acid), $C_9H_{16}O_4$, has been redetermined at 180 K. The molecular units have twofold symmetry and are linked *via* the ubiquitous *syn-syn* carboxylic acid dimer to form infinite chains running approximately along the [$\overline{4}01$] vector.

Comment

Two polymorphs of azelaic acid, (I), have been reported previously: the α form crystallizes in $P2_1/c$ (Caspari, 1928; Housty & Hospital, 1967) and the β form crystallizes in C2/c(Housty & Hospital, 1967). For both polymorphs, the structures present in the CSD (AZELAC10 and AZELAC01; Allen & Kennard, 1993) are derived from room-temperature

data with *R* factors *ca* 10% and ambiguities in the treatment of H atoms. We have, therefore, re-examined azelaic acid and report here the structure of the β form measured at 180 K to significantly greater precision.

Figure 1

The molecular unit of the title compound showing displacement ellipsoids at the 50% probability level.

Experimental

Azelaic acid was obtained from Aldrich and recrystallized from ethanol.

Crystal data	
$C_9H_{16}O_4$	$D_x = 1.287 \text{ Mg m}^{-3}$
$M_r = 188.22$	Mo $K\alpha$ radiation
Monoclinic, C2/c	Cell parameters from 2161
a = 22.622 (2) Å	reflections
b = 4.7348(2) Å	$\theta = 1.0-27.5^{\circ}$
c = 9.6864 (7) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 110.559 \ (3)^{\circ}$	T = 180 (2) K
$V = 971.5(1) \text{ Å}^3$	Plate, colourless
Z = 4	$0.25 \times 0.12 \times 0.06 \text{ mm}$

 \odot 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 12 December 2000

Accepted 9 January 2001

Online 30 January 2001

Figure 2

Projection onto (010) showing hydrogen-bonded chains running approximately along the [401] vector.

Data collection

Nonius KappaCCD diffractometer Thin-slice ω and φ scans Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{\min} = 0.907, T_{\max} = 0.994$ 3154 measured reflections 1085 independent reflections	913 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$ $\theta_{max} = 27.4^{\circ}$ $h = 0 \rightarrow 28$ $k = -6 \rightarrow 6$ $l = -12 \rightarrow 11$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.096$ S = 1.09 1085 reflections 64 parameters	$\begin{split} &w = 1/[\sigma^2(F_o{}^2) + (0.0328P)^2 \\ &+ 0.5150P] \\ &where \ P = (F_o{}^2 + 2F_c{}^2)/3 \\ (\Delta/\sigma)_{\rm max} = 0.010 \\ \Delta\rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}{}^{-3} \\ \Delta\rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}{}^{-3} \end{split}$

Table 1

H atoms: see below

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O2-H1\cdots O1^i$	0.96 (2)	1.70 (2)	2.6576 (12)	173.5 (17)
Symmetry code: (i)	$\frac{1}{2} - x, \frac{1}{2} - y, -z.$			

The H atom of the carboxylic acid group was located in a difference Fourier map and refined without restraint. All other H atoms were placed geometrically and allowed to ride during subsequent refinement with an isotropic displacement parameter fixed at 1.2 times that for the C atom to which they are attached.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *HKL SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *HKL DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* (Sheldrick, 1993) and *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *SHELXL97*.

We thank the EPSRC for financial assistance with purchase of the CCD diffractometer.

References

Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31–37.
Blessing, R. H. (1995). Acta Cryst. A51, 33–38.
Caspari, W. A. (1928). J. Chem. Soc. pp. 3235–3241.
Housty, J. & Hospital, M. (1967). Acta Cryst. 22, 288–295.
Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–316.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Wetking, D. L. BERNE, C. M. & Discust. L. L. (1992). COLUMEDOM. Cit.

Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.